Classification of Flywheels—Flywheels may be classified as balance wheels or as flywheel
pulleys. The object of all flywheels is to equalize the energy exerted and the work
done and thereby prevent excessive or sudden changes of speed. The permissible speed
variation is an important factor in all flywheel designs. The allowable speed change varies
considerably for different classes of machinery; for instance, it is about 1 or 2 per cent in
steam engines, while in punching and shearing machinery a speed variation of 20 per cent
may be allowed.
The function of a balance wheel is to absorb and equalize energy in case the resistance to
motion, or driving power, varies throughout the cycle. Therefore, the rim section is generally
quite heavy and is designed with reference to the energy that must be stored in it to prevent
excessive speed variations and, with reference to the strength necessary to withstand
safely the stresses resulting from the required speed. The rims of most balance wheels are
either square or nearly square in section, but flywheel pulleys are commonly made wide to
accommodate a belt and relatively thin in a radial direction, although this is not an invariable
rule.
Flywheels, in general, may either be formed of a solid or one-piece section, or they may
be of sectional construction. Flywheels in diameters up to about eight feet are usually cast
solid, the hubs sometimes being divided to relieve cooling stresses. Flywheels ranging
from, say, eight feet to fifteen feet in diameter, are commonly cast in half sections, and the
larger sizes in several sections, the number of which may equal the number of arms in the
wheel. Sectional flywheels may be divided into two general classes. One class includes
cast wheels which are formed of sections principally because a solid casting would be too
large to transport readily. The second class includes wheels of sectional construction
which, by reason of the materials used and the special arrangement of the sections, enables
much higher peripheral speeds to be obtained safely than would be possible with ordinary
sectional wheels of the type not designed especially for high speeds. Various designs have
been built to withstand the extreme stresses encountered in some classes of service. The
rims in some designs are laminated, being partly or entirely formed of numerous segmentshaped
steel plates. Another type of flywheel, which is superior to an ordinary sectional
wheel, has a solid cast-iron rim connected to the hub by disk-shaped steel plates instead of
cast spokes.
Steel wheels may be divided into three distinct types, including 1) those having the center
and rim built up entirely of steel plates; 2) those having a cast-iron center and steel
rim; and 3) those having a cast-steel center and rim formed of steel plates.
Wheels having wire-wound rims have been used to a limited extent when extremely high
speeds have been necessary.
When the rim is formed of sections held together by joints it is very important to design
these joints properly. The ordinary bolted and flanged rim joints located between the arms
average about 20 per cent of the strength of a solid rim and about 25 per cent is the maximum
strength obtainable for a joint of this kind. However, by placing the joints at the ends
of the arms instead of between them, an efficiency of 50 per cent of the strength of the rim
may be obtained, because the joint is not subjected to the outward bending stresses
between the arms but is directly supported by the arm, the end of which is secured to the rim
just beneath the joint. When the rim sections of heavy balance wheels are held together by
steel links shrunk into place, an efficiency of 60 per cent may be obtained; and by using a
rim of box or I-section, a link type of joint connection may have an efficiency of 100 percent.
No comments:
Post a Comment